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Abstract

In this paper we study the interplay between adiabatic limits of a
Riemannian foliation and the classical Weitzenböck formula. For the
leafwise part, our study leads to a vanishing result for the first order
term Ê1 of differential spectral sequence associated with the foliation.
For the transversal part we obtain a Weitzenböck type formula which
is an extension of the previous formula for basic forms due to Ph.
Tondeur, M. Min-Oo, and E. Ruh, and is also more general than a
Weitzenböck formula for transverse fiber bundle due to Y. Kordyukov.
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1 Introduction

Let us consider the C∞ Riemannian foliation F on a closed manifold M ,
endowed with a bundle-like metric g, i.e., a metric so that the foliation is
locally defined by a Riemannian submersion in a neighborhood of any point
x ∈ M ; as a result, the foliation has an isometric holonomy on any transverse
submanifold [11]. We start out by stating some basic facts concerning spectral
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sequence and the adiabatic limit associated with the foliation. The dimension
of the foliation will be denoted by p, the codimension by q and (Ω, d) will
denote the de Rham complex on M . In the classical way (see e.g. [1]) we
get a bigrading for Ω, induced by the foliated structure and the bundle-like
metric:

Ωu,v = C∞
(

u∧
TF⊥∗ ⊕

v∧
TF∗

)
, u, v ∈ Z. (1)

Then, the de Rham derivative and coderivative split into bihomogeneous
components as follows:

d = d0,1 + d1,0 + d2,−1, δ = δ0,−1 + δ1,0 + δ−2,1, (2)

where the indices describe the corresponding bigrading.
Considering the space of r−forms of filtration degree ≥ k:

Ωr
k = {ω ∈ Ωr | iXω = 0, (∀) X = X1 ∧ ... ∧Xr−k+1, Xi ∈ X (F)} ,

where iX is the interior product by X, we get the following decreasing filtra-
tion:

Ω := Ω0 ⊃ Ω1 ⊃ ... ⊃ Ωq ⊃ Ωq+1 = 0,

which allow us to define the terms of the differential spectral sequence (Ek, dk)
(see e.g [2]):

Zu,v
k = Ωu+v

u ∩ d−1(Ωu+v+1
u+k ), Zu,v

∞ = Ωu+v
u ∩ ker d,

Bu,v
k = Ωu+v

u ∩ d(Ωu+v−1
u−k ), Bu,v

∞ = Ωu+v
u ∩ im d,

Eu,v
k =

Zu,v
k

Zu+1,v−1
k−1 +Bu,v

k−1

, Eu,v
∞ = Zu,v

∞
Zu+1,v−1
∞ +Bu,v

∞
.

In particular Zu,v
0 = Zu,v

−1 = Ωu+v
u . Let us consider Bu,v

−1 = 0, Eu,v
0 =

Ωu+v
u /Ωu+v

u+1. Also, we get Bu,v
u = Bu,v

∞ and Zu,v
q−u+1 = Zu,v

∞ because the filtra-

tion of Ω is of lenght q + 1. Each homomorfism dk : Eu,v
k → Eu+k,v−k+1

k is
canonically induced by d.

The C∞ topology on Ω induces a topology on each Eu,v
k , with respect

to the bigrading. In this manner, each dk becomes a continuous operator
on Ek =

⊕
u,v

Eu,v
k . So we obtain two bigraded complexes: 0k ⊂ Ek and the

quotient complex Êk = Ek/0k.
A differential form ω is said to be basic if it satisfies iXω = 0 and iXdω = 0

for all X ∈ X(F) [8]. The link between spectral sequence terms and the basic
cohomology H ·

B(F) is emphasize by the isomorphisms:

E ·,0
2
∼= H ·

B(F).
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The adiabatic limit of a Riemannian foliation -which will represent the
main ingredient in this paper, was introduced by E. Witten for a Riemannian
bundle over the circle [13]. We decompose the metric g = g⊥⊕gF with respect
to the splitting TM = TF⊥⊕TF . Introducing a parameter h > 0, we define
the family of metrics

gh = h−2g⊥ ⊕ gF .

The limit of the Riemannian manifold (M, gh) as h ↓ 0 is known as the adi-
abatic limit, while the above parameter is known as the adiabatic parameter.

The starting point of our paper is represented by the joint work of Álvarez
López and Kordyukov [1]. Considering the leafwise Laplace operator ∆0 and
its kernel H1, the authors proved the following Hodge-de Rham decomposi-
tion

Ω = H1 ⊕ im d0,1 ⊕ ker δ0,−1, (3)

which yields an isomorphism between H1 and Ê1. This allows us to apply
the classical Bochner technique (see e. g. [10]) in this special frame.

In the next section, using the above defined adiabatic parameter h and the
bigrading we describe the terms of classical Weitzenböck formula as polyno-
mials in h. Identifying the coefficients, this description and relation (3) will

lead us in the last section to a vanishing result for Ê1 in Theorem 1; this rep-
resents the corresponding vanishing result for the leafwise Weitzenböck for-
mula. In the same manner we obtain in Theorem 2 a transversal Weitzenböck
formula which turns out to be more general than the previous ones stated in
[7] and [5].

2 Adiabatic limits and Riemannian foliations

The variation of Laplace operator, Levi Civita connection and metric tensor
field with respect to the adiabatic parameter is studied in [2] and [12] . In
this section we recall the main results and refine some of them using the
above defined bigrading.

In the following, let us consider {Fa}, 1 ≤ a ≤ q, as being C∞ local
infinitesimal transformation of (M,F) orthogonal to the leaves, and {Ei},
1 ≤ i ≤ p, as being C∞ local vector fields tangent to the leaves. We can as-
sume furthermore that {Fa} and {Ei} are transversal and leafwise orthonor-
mal frame fields, and as a consequence the restrictions of {Fa, Ei} at any point
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x ∈ M where they are defined form an orthonormal basis {fa, ei} in the space
TxM of local tangent vectors. Let us consider also the dual coframes {θa, ωi}
for {Fa, Ei}, and {αa, βi} for {fa, ei}. The local vector fields {Fa} will be
called basic vector fields (see e.g [8]). For an arbitrary differential 1-form Θ,
we denote by ΘT the transverse component and by ΘL the leafwise compo-
nent; as a result, if ∇ is the covariant derivative and U a local tangent vector
field, then we obtain the splitting ∇UΘ = (∇UΘ)T + (∇UΘ)L. We define
the transversal projection of the covariant derivative acting on differential
1-forms ∇T

UΘ := (∇UΘ)T and the leafwise projection ∇L
UΘ := (∇UΘ)L.

Using the classical Koszul formula, we are able to express all the compo-
nents of the Levi-Civita connection (determined by the transverse-leafwise
decomposition) as polynomials in h. We obtain [12]:

Proposition 1. The following equalities relate the canonical Levi-Civita con-
nections associated to the metrics gh and g:

∇gh,T
Fa

θb = ∇T
Fa

θb, ∇gh,L
Fa

θa = h2∇L
Fa

θa,

∇gh,T
Ei

ωj = ∇T
Ei

ωj, ∇gh,L
Ei

ωj = ∇L
Ei

ωj,

∇gh,T
Fa

ωi = ∇T
Fa

ωi, ∇gh,L
Fa

ωi = ∇T
Fa

ωi,

∇gh,T
Ei

θa = h2∇T
Ei

θa, ∇gh,L
Ei

θa = h2∇L
Ei

θa.

(4)

for any indices a, b, i and j, with 1 ≤ a, b ≤ q and 1 ≤ i, j ≤ p, respectively.

It is possible now to express some of the curvature operator components as
polynomials in h. Considering arbitrary local tangent vector fields U and V
we denote by RT

gh,U,V and RL
gh,U,V the transversal and respectively the leafwise

projection of the curvature operator Rgh,U,V = ∇gh

U ∇gh

V − ∇gh

V ∇gh

U − ∇gh

[U,V ]

acting on differential forms; also we denote by R⊥ the transversal curvature
operator (see e.g. [6]) and by RF the leafwise curvature operator (see [3]).

Proposition 2. The components of the curvature operator associated to the
metrics gh and g are subject to the relations [12]:

RT
gh,fa,fb

αc = R⊥
fa,fb

θc + h2RT ,2
fa,fb

θc, (5)

RL
gh,ei,ej

βk = RF
ei,ej

βk + h2RL,2
ei,ej

βk.

RL
gh,ei,fa

αc = h2RL,2
ei,fa

αc + h4RL,4
ei,fa

αc,

RT
gh,ei,ej

αc = h4RT ,4
ei,ej

αc + h2RT ,2
ei,ej

αc.

RL
gh,fa,fb

αc = h2RL,2
fa,fb

αc,

RT
gh,ei,fa

αc = h2RT ,2
ei,fa

αc.
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In the following let us now consider the classical Weitzenböck formula (see
e.g. [10]). We take an orthonormal frame field {Ei} in the neighborhood of
an arbitrary point x ∈ M ; the restriction of {Ei} at x induces an orthonormal
basis {εi} at x such that∇εi

Ej = 0, with 1 ≤ i, j ≤ n. If {Θi} and {θi} are the
dual coframes for {Ei} and {εi} respectively, considering that d =

∑
i

Θi∧∇Ei

and δ = −∑
i

iEi
∇Ei

, we can express the Laplace operator:

∆ = dδ + δd = ∇∗∇+ K, (6)

where K =:
∑
i<j

θi · θj · Rεi,εj
, and θ · ω := θ ∧ ω − iθ]ω, for any 1-form θ

and arbitrary form ω, the tangent vector θ] being determined by the relation
〈θ], v〉 = θ(v), for any v ∈ TxM .

In the introductory section we mentioned the canonical splitting TM =
TF⊥ ⊕ TF . We have also a splitting of the cotangent bundle TM∗ =
TF⊥∗ ⊕ TF∗. The canonical transversal and leafwise projection operator
will be denoted by prT and prL respectively. We can consider the rescal-
ing homomorphism Θh : (TM∗, gh) → (TM∗, g), defined using the identity
operators idTF⊥∗ and idTF∗ :

Θh = h idTF⊥∗ ⊕ idTF∗ . (7)

The induced rescaling homomorphism on differential forms or tensor fields
will be denoted also by Θh. One can prove that these are in fact isometries of
Riemannian vector bundles (see e.g [6]). This allow us to define the rescaled
operators ∆h := Θh∆gh

Θ−1
h , ∇h := Θh∇ghΘ−1

h and Kh := ΘhKgh
Θ−1

h .
Using the above Riemannian vector bundles isometry and applying (6)

for Θ−1
h ω, we obtain the formula

〈∆hω, ω〉 =
〈∇hω,∇hω

〉
+

〈
Khω, ω

〉
, (8)

where the inner product is obtained integrating on the closed Riemannian
manifold M (see e.g. [4]).

We will express all terms of (8) as polynomials in h. The first term is
studied in [2]:

〈∆hω, ω〉 = 〈∆0ω, ω〉+ h 〈(D⊥D0 + D0D⊥)ω, ω〉 (9)

+h2 (〈(D0F + FD0)ω, ω〉+ 〈∆⊥ω, ω〉)
+h3 〈(D⊥F + FD⊥)ω, ω〉+ h4

〈
F 2ω, ω

〉
,
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where F is the 0-th order operator d2,−1 + δ−2,1, D0 := d0,1 + δ0,−1 and ∆0 :=
D2

0 are the leafwise Dirac and Laplace operators, while D⊥ := d1,0 + δ−1,0

and ∆⊥ := d1,0δ−1,0 + δ−1,0d1,0 represent the transversal Dirac and Laplace
operators, respectively .

In order to obtain a transversal Weitzenböck formula we need a refinement
of (9) in the presence of the bigrading induced by the foliated structure and
the bundle-like metric. We state now the following result:

Proposition 3. If we take ω = ωu,v, then the coefficient of h2 of the above
polynomial becomes 〈∆⊥ωu,v, ωu,v〉.
Proof. It is easy to see that

(D0F + FD0)ω
u,v = (d0,1d2,−1 + d2,−1d0,1) ωu,v

+ (δ0,−1d2,−1 + d2,−1δ0,−1) ωu,v

+ (δ−2,1d0,1 + d0,1δ−2,1) ωu,v

+ (δ0,−1,δ−2,1 + δ−2,1δ0,−1) ωu,v,

where (d0,1d2,−1 + d2,−1d0,1) ωu,v ∈ Ωu+2,v, (δ0,−1d2,−1 + d2,−1δ0,−1) ωu,v ∈ Ωu+2,v−2,
(δ−2,1d0,1 + d0,1δ−2,1) ωu,v ∈ Ωu−2,v+2, and finally (δ0,−1δ−2,1 + δ−2,1δ0,−1) ωu,v ∈
Ωu−2,v; as a result, the term 〈(D0F + FD0)ω

u,v, ωu,v〉 vanishes.

For the second term we consider the covariant derivative ∇ induced on
Ωu,v, with u and v satisfying u + v = r:

∇ : Ωu,v −→ C∞(TM∗)⊗ C∞(ΛrTM∗).

We refine the covariant derivative in the presence of the canonical pro-
jections operators prT , prL-determined by the foliated structure, and the
canonical projections πu,v, πu−1,v+1 and πu+1,v−1-induced by the bigrading,
defining the following six differential operators:

∇T ,0,0 = (prT ⊗ πu,v) ◦ ∇, ∇L,0,0 = (prL ⊗ πu,v) ◦ ∇,
∇T ,−1,1 = (prT ⊗ πu−1,v+1) ◦ ∇, ∇L,−1,1 = (prL ⊗ πu−1,v+1) ◦ ∇,
∇T ,1,−1 = (prT ⊗ πu+1,v−1) ◦ ∇, ∇L,1,−1 = (prL ⊗ πu+1,v−1) ◦ ∇.

The above operators can be naturally extended from Ωu,v to Ω.

Remark 1. Considering the rescaled covariant derivative, it follows easily
that:

∇h = ∇h
T ,0,0 +∇h

L,0,0 +∇h
T ,−1,1 +∇h

L,−1,1 +∇h
T ,1,−1 +∇h

L,1,−1. (10)
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Following [1], we choose a foliated chart U on M ; then we obtain the
following description of the de Rham complex:

Ωu,v(U) = Ωu(U/FU) ∧ Ω0,v(U) ≡ Ωu(U/FU)⊗ Ω0,v(U), (11)

As a consequence, we take α ∈ Ωu(U/FU) and β ∈ Ω0,v(U), and we evaluate
the above operators acting on differential forms of the type α∧β, the general
formula being easy to obtain by linearity. Considering also the change of the
bigrading, we write all the operators only using the Levi-Civita connection
associated to g and the adiabatic parameter h:

∇h
T ,0,0(α ∧ β) = h

(∇gh

T ,0,0α⊗ β + α⊗∇gh

T ,0,0β
)

= h∇T ,0,0(α ∧ β),
∇h
L,0,0(α ∧ β) = ∇gh

L,0,0(α ∧ β) = α⊗∇L,0,0β + h2∇L,0,0α⊗ β,
∇h
T ,−1,1(α ∧ β) = ∇gh

T ,−1,1(α ∧ β) = h2∇T ,−1,1α ∧ β = h2∇T ,−1,1(α ∧ β),
∇h
L,−1,1(α ∧ β) = h−1∇gh

L,−1,1(α ∧ β) = h∇L,−1,1α ∧ β = h∇L,−1,1(α ∧ β),
∇h
T ,1,−1(α ∧ β) = h2∇gh

T ,1,−1(α ∧ β) = h2 α ∧∇T ,1,−1β = h2∇T ,1,−1(α ∧ β),
∇h
L,1,−1(α ∧ β) = h∇gh

L,1,−1(α ∧ β) = hα ∧∇L,1,−1β = h∇L,1,−1(α ∧ β).

In the following we denote idΩu(U/FU ) ⊗∇L,0,0 by ∇0
L,0,0 and ∇L,0,0 ⊗ idΩ0,·(U)

by ∇2
L,0,0. Consequently, we obtain the following result [12]:

Proposition 4. The following polynomial description is valid:

‖∇hω‖2 = ‖∇0
L,0,0ω‖2 + 2h

(〈∇0
L,0,0ω,∇L,1,−1ω

〉
+

〈∇0
L,0,0ω,∇L,−1,1ω

〉)

+h2
(
2
〈∇0

L,0,0ω,∇2
L,0,0ω

〉
+ 2 〈∇L,1,−1ω,∇L,−1,1ω〉+ ‖∇T ,0,0ω‖2

+ ‖∇L,1,−1ω‖2 + ‖∇L,−1,1ω‖2) + o(h2).

The following corollary will be useful in the next section:

Corollary 1. If ω = ωu,v, then the coefficient of h2 in the above polynomial
description becomes

2
〈∇0

L,0,0ω
u,v,∇2

L,0,0ω
u,v

〉
+ ‖∇T ,0,0ω

u,v‖2 + ‖∇L,1,−1ω
u,v‖2 + ‖∇L,−1,1ω

u,v‖2 .

Proof. If we take ω = ωu,v, then ∇L,1,−1ω
u,v ∈ Ωu+1,v−1 and ∇L,−1,1ω

u,v ∈
Ωu−1,v+1, so 〈∇L,1,−1ω

u,v,∇L,−1,1ω
u,v〉 = 0, and the conclusion follows.

In order to investigate the last term of (8), let us observe that the formulas
(5) allow us to express the curvature components as polynomials in h [12]:

Kh =
4∑

i=0

hi ·K i
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and in accordance with the bigrading, that means:

Ki = K i
−2,2 + K i

−1,1 + K i
0,0 + Ki

1,−1 + K i
2,−2 (12)

for 0 ≤ i ≤ 4.
As a consequence, we end this section with the following result:

Proposition 5. If ω = ωu,v, then the coefficient of h2 in the last term of (8)
is

〈
K2

0,0ω
u,v, ωu,v

〉
.

Proof. If we make i = 2, then we obtain the result observing that the terms〈
K2
−2,2ω

u,v, ωu,v
〉
,

〈
K2
−1,1ω

u,v, ωu,v
〉
,

〈
K2

1,−1ω
u,v, ωu,v

〉
and

〈
K2

2,−2ω
u,v, ωu,v

〉
vanish.

3 A leafwise and a transversal Weitzenböck

formula

In [12], the relation (8) is considered for ωu,v ∈ Ωu,v. Writing the both sides
of the equality as polynomials in h and considering only the coefficients of
h0, a leafwise Weitzenböck formula is obtained:

〈∆0ω
u,v, ωu,v〉 = ‖∇0

L,0,0ω
u,v‖2 +

〈
K0

0,0ω
u,v, ωu,v

〉
. (13)

where K0
0,0(α∧β) = α⊗∑

i<j

βi ·βj ·RF
ei,ej

β. As a consequence, we obtain now

the following vanishing result:

Theorem 1. If the curvature operator along the leaves RF is positive at
every point, then Êu,v

1 = 0 for v = 1, 2, .., p − 1. Moreover, if the foliation
has dense leaves, RF is nonnegative and positive at some point, then we get
the same result.

Proof. As in [1], we denote ker ∆0 by H1. Let ωu,v be a differential form in
Hu,v, for v = 1, 2, .., p − 1. At an arbitrary point x ∈ M , we consider first
ωu,v = α ∧ β, the general case being easy to obtain by linearity. Arguing as
in the classical case (see e.g., [10]), we get:

〈
K0

0,0(α ∧ β), α ∧ β
〉

x
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= ‖α‖2
x ·

〈∑
i<j

βi · βj ·RF
ei,ej

β, β

〉

x

=
1

2
‖α‖2

x ·
〈∑

i<j

[
βi · βj, RF

ei,ej
β
]
, β

〉

x

= −1

2
‖α‖2

x ·
〈∑

i<j

RF
ei,ej

β,
[
βi · βj, β

]
〉

x

= −1

4
‖α‖2

x ·
〈 ∑

i<j,k<l

〈
RF

ei,ej
ek, el

〉
x

[
βk · βl, β

]
,
[
βi · βj, β

]
〉

x

=
1

4
‖α‖2

x ·
∑

i<j,k<l

〈
RF(ei ∧ ej), ek ∧ el

〉
x

〈[
βk · βl, β

]
,
[
βi · βj, β

]〉
x
.(14)

Now observe that the elements {ei ∧ ej}i<j form an orthonormal basis

for
∧2 TxF , and the {βi ∧ βj}

i<j
are the dual basis for

∧2 T ∗
xF . The last

expression is clearly independent of the choise of orthonormal bases {fa, ei}
and {αa, βi}. We select the orthonormal basis {Ξs}1≤s≤ p(p−1)

2

for
∧2 TxF such

that RF(Ξs) = λsΞs. Considering {Φs}
1≤s≤ p(p−1)

2

the dual basis for
∧2 T ∗

xF ,

we obtain:

〈
K0

0,0(α ∧ β), α ∧ β
〉

x
=

1

4

∑
s

λs ‖[Φs, β]‖2
x · ‖α‖2

x .

If d0,1ω
u,v = δ0,−1ω

u,v = 0, then

‖∇0
L,0,0ω

u,v‖2 +
1

4

∫

M

∑
s

λs ‖[Φs, β]‖2
x · ‖α‖2

x dµx = 0.

As both terms are nonnegative, they both vanish, so ∇0
L,0,0ω

u,v = α ⊗
∇L,0,0β = 0 and λs ‖[Φs, β]‖2

x · ‖α‖2
x = 0. If λs = 0 for all s, the only

way this can happen is if α = 0, or [Φs, β] = 0 for all s. The last condition is
known to be equivalent to β = 0 [10], so the both situations imply ωu,v = 0.
Now, suppose the foliation has dense leaves. If RF ≥ 0 and RF > 0 at some
point, than we have α = 0 or β = 0 at the point. As α is a basic form
and ∇L,0,0β = 0 imply that β is parallel along the leaves, we obtain in all
cases that ωu,v = 0. By consequence, Hu,v

1 = 0, for v = 1, 2, .., p − 1. As
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pointed out in the introductory section, starting with the Hodge decomposi-
tion (3) and arguing as in the classical case, it was proved in [2] that Ê1 and
H1 are isomorphic topological vector spaces. Considering now the induced
bigrading, we get Êu,v

1
∼= Hu,v

1 , so Êu,v
1 = 0 for v = 1, 2, .., p− 1.

Remark 2. For a leafwise Weitzenböck-Lichnerowicz formula and for a cor-
responding vanishing result in the special case of a foliation endowed with a
spin structure, see [9, Appendix C].

Using now the same technique as in [12], we obtain a transversal Weitzen-
böck formula:

Theorem 2. If ω ∈ Ωr is a differential form of degree r defined on M , then
the following relation holds:

〈∆⊥ω, ω〉 = 2
〈∇0

L,0,0ω,∇2
L,0,0ω

〉
+ ‖∇T ,0,0ω‖2 + ‖∇L,1,−1ω‖2 (15)

+ ‖∇L,−1,1ω‖2 +
〈
K2

0,0ω, ω
〉
.

Proof. We collect the coefficients of h2 in (8) in accordance with Proposition
3, Proposition 5 and Corollary 1; by linearity, we end up with the above
general transversal Weitzenböck formula.

Remark 3. The above formula is more general than the Weitzenböck for-
mula presented in [7] which works for basic forms and also more general
than transverse Weitzenböck type formula in [5, Theorem 8] which works on
transverse fiber bundle.

Remark 4. In [7], a Weitzenböck type formula for the transversal Laplacian
allow the authors to obtain vanishing results concerning the basic de Rham
complex of a Riemannian foliation. In certain situations, a useful tool for
studying basic de Rham complex is the associated spectral sequence(see e.g
[2]). The spectral sequence terms do not contain only basic differential forms,
so our transversal Weitzenböck type formula written for differential forms of
arbitrary degree might help us, at least in some particular cases, to investigate
the cohomology of a Riemannian foliation.
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